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Plutonium (Pu) is well known to have complex and unique physico-chemical 

properties [1].  Notably, the pure metal exhibits six solid-state phase transformations with 

large volume expansions and contractions along the way to the liquid state: 

α → β→ γ → δ→ δ’→ ε→ liquid. Unalloyed Pu melts at a relatively low temperature 

~640oC to yield a higher density liquid than that of the solid from which it melts, (Figure 1). 

Detailed understanding of the properties of plutonium and plutonium-based alloys is critical 

for the safe handling, utilization, and long-term storage of these important, but highly toxic 

materials. However, both technical and and safety issues have made experimental 

observations extremely difficult.   

           

Figure 1. Transformations in Pu to different  crystal structures are accompanied by very large 
volume changes. Alloying with Ga or Al avoids the transformation to γ, β and α and stabilizes the δ 
phase all the way to room temperature and below [1].   

   

        Pu Crystal Structure                  Density 
                                                               (g/cc) 
   α   Simple Monoclinic                      19.86  

   β   Body-Centered Monoclinic        17.70  

   γ    Face-Centered Orthorhombic    17.14 

   δ   Face-Centred Cubic                     15.92 

   δ’  Body-Centered Tetragonal         16.00 

   ε    Body-Centered cubic                  16.51 

   L   Liquid                                            16.65 
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Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of 

the basic properties of Pu materials such as: force constants, sound velocities, elastic 

constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, 

etc.  However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied 

measurement for the past few decades since the discovery of this element in 1941. This is due 

to a combination of the high thermal-neutron absorption cross section of plutonium and the 

inability to grow the large single crystals (with dimensions of a few millimeters) necessary 

for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be 

hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu 

and its alloys have remained unknown experimentally and theoretically . 

The experimental limitations have recently been overcome by using a tightly focused 

undulator x-ray micro-beam scattered from single -grain domains in polycrystalline 

specimens. This experimental approach has been applied successfully to map the complete 

PDCs of an fcc δ -Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) 

capability on ID28 [2]. 

The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and 

represent the first full set of phonon dispersions ever determined for any Pu-bearing materials 

[3]. The solid curves (red) are calculated using a standard Born-von Kármán (B-vK) force 

constant model. An adequate fit to the experimental data is obtained if interactions up to the 

fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean 

field theory (DMFT) results by Dai et al. [4]. 

The elastic moduli calculated from the slopes of the experimental phonon dispersion 

curves near the Γ point are: C11 = 35.3 ±1.4 GPa, C 12 = 25.5 ±1.5 GPa and C 44 = 30.53 ±1.1 

GPa.  These values are in excellent agreement with those of the only other measurement on a 
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Fig. 2. Phonon dispersions along high symmetry directions in δ-Pu-0.6 wt% Ga alloy. The longitudinal and   
transverse modes are denoted L and T respectively. The experimental data are shown as circles. Along the 
[0ξξ] direction, there are two transverse branches [011]<01-1> (T 1) and [011]<100> (T 2). Note the 
softening of the TA[ξξξ] branch towards the L point.  The lattice parameter of our samples is a=0.4621 nm.  
The red solid curves are the fourth-nearest neighbour Born-von Kármán model fit.  The blue dashed curves 
are calculated dispersions for pure δ-Pu based on DMFT (4). 

 

similar alloy (1 wt % Ga) using ultrasonic techniques [5] as well as with those recently 

calculated from a combined DMFT and linear response theory for pure δ-Pu [4] 

Several unusual features, including a large elastic anisotropy, a small shear elastic 

modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the 

[111] transverse modes are found. These features can be related to the phase transitions of 

plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. 

The HRIXS results also provide a critical test for theoretical treatments of highly correlated 

5f electron systems as exemplified by recent dynamical mean field theory (DMFT) 

calculations for δ-plutonium. 
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The experimental-theoretical agreements shown in Figure 2 in terms of a low shear 

elastic modulus C’, a Kohn-like anomaly in the T1[011] branch, and a large softening of the 

T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f 

electron systems of which δ-Pu is a classic example. However, quantitative differences 

remain. These are the position of the Kohn anomaly along the T1[011] branch, the energy 

maximum of the T[111] mode s and the softening of the calculated T[100] branch near the X 

point, which is not observed experimentally. These differences are significant and thus 

provide a framework for refined theoretical treatments. Systematic HRIXS experiments as a 

function of temperature and concentration in the fcc Pu-Ga alloys are underway.  
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